K23P 3111

Reg. No.:

Name:

I Semester M.Sc. Degree (CBCSS – OBE – Regular) Examination, October 2023 (2023 Admission) MATHEMATICS MSMAT01C01 : Abstract Algebra

Time: 3 Hours Max. Marks: 80

PART - A

Answer any five questions. Each question carries 4 marks.

 $(5 \times 4 = 20)$

- 1. State the fundamental theorem of finitely generated Abelian groups.
- 2. State Sylow's first theorem.
- 3. Define a group presentation with an example.
- 4. Find the order of (8, 4,10) in $\mathbb{Z}_{12} \times \mathbb{Z}_{60} \times \mathbb{Z}_{24}$.
- 5. If H and K are any groups, show that G = H × K has quotient groups isomorphic to H and K.
- 6. If G has a quotient group isomorphic to H, is it true that G is isomorphic to H × K for some group K?

PART - B

Answer any three questions. Each question carries 7 marks.

(3×7=21)

- 7. Show that $\mathbb{Z}_m \times \mathbb{Z}_n$ is isomorphic to \mathbb{Z}_{mn} iff m and n are relatively prime.
- 8. Let X be a G set and let $x \in X$. Show that $|Gx| = (G : G_x)$. Show also that if G is finite, |Gx| is a divisor of |G|.

K23P 3111

- If G is generated by A and G' is any group, show that there is at most one homomorphism mapping each a ∈ A to any elements in G'. If G is free on A, show that there is exactly one such homomorphism.
- 10. Show that if F is a field, every ideal in F[x] is principal.
- 11. State and prove Burnside's Formula.

PART - C

Answer any three questions. Each question carries 13 marks.

 $(3 \times 13 = 39)$

- 12. State and prove Sylow's Second Theorem.
- 13. Let R be a commutative ring with unity. Show that M is a maximal ideal of R if and only if R/M is a field.
- 14. a) Show that the converse of Lagrange's theorem holds for (finite) Abelian groups.
 - b) Show that every Abelian group of a square-free order is cyclic.
 - c) Show that for a prime number p, every group of order p² is Abelian.
- 15. Show that any integral domain D can be embedded in a field F such that every element of F can be expressed as a quotient of two elements of D by outlining the major ingredients of the construction.
- 16. Let G be a non-zero free Abelian group of finite rank n, and let K be a non-zero subgroup of G. Then show that K is free Abelian of rank $s \le n$.